			Documer	NT LEA	d Sheet		
		Eng	INEERING	Subm	IISSION		
		<u>Proj</u>	<u>ect:</u> Co Ini	OKSTOV DUSTRI <i>P</i>	VN CROSS	, FOURTH AVEN	ue, Cookstown
		<u>Repo</u>	<u>rt Title:</u> En	GINEER	ing Servi	ces Report	
		STAT	<u>us:</u> Pl	ANNING	6 Permiss	ION	
			<u>іт:</u> Sт	EELWO	rks P ropi	ERTY DEVELOPM	ents Ltd
		Arch	<u>IITECT:</u> C+	-W O'E	BRIEN ARC	HITECTS	
						G CON	SULTING ENGINEERS
						Ireland Office: Scope House Whitehall Road Dublin 12K8PP	UK Office: 75 Shelton St Covent Garden London WC2H 9JQ
Where a	his document has bee	en revised it is recorded	d as indicated below	. Please re	place all super.	seded pages of this docu	iment with current version.
Rev	Date	Descri		ву	Спескеа	Ар	provais
P1	20 NUV 18		eting (ARD)	ртс	GD		
P3	22 Aug 19	Issued to Irish W	ater	РТС	GD		
P4	24 Sep 19	Planning Submis	sion to ABP	PTC	GD		
P5	01 Oct 20	Planning Submis	sion to ABP	PTC	GD		
	Entire Docume Issued this Rev	ent vision					1

CONTENTS

- 1.0 INTRODUCTION
- 2.0 SURFACE WATER ATTENUATION
- 3.0 INTERCEPTION STORAGE
- 4.0 TREATMENT VOLUME
- 5.0 SUDS FEATURES
- 6.0 SURFACE WATER DRAINAGE SYSTEM
- 7.0 FOUL DRAINAGE
- 8.0 FLOOD RISK
- 9.0 WATER SUPPLY
- 10.0 ACCESS

APPENDICES

- A. WATER SERVICES RECORDS
- B. SURFACE WATER ATTENUATION CALCULATIONS
- C. FOUL SEWER LOADING CALCULATIONS
- D. WATER DEMAND CALCULATIONS
- E. SOUTH DUBLIN COUNTY COUNCIL DEVELOPMENT PLAN 2016 - 2022 ZONING OBJECTIVES - MAP 9
- F. SOUTH DUBLIN COUNTY COUNCIL DEVELOPMENT PLAN 2016 - 2022 STRATEGIC FLOOD RISK ASSESSMENT FLUVIAL FLOOD ZONE MAPPING - MAP 15
- G. CONFIRMATION OF FEASIBLITY LETTER (IW)
- H. STATEMENT OF DESIGN ACCEPTANCE (IW)

1.0 INTRODUCTION

This report relates to the proposed mixed-use retail and residential development at the intersection of Fourth Avenue and Cookstown Road, Cookstown Industrial Estate, Dublin 24. The proposed development comprises a site, located immediately to the east of the southern arm of the Cookstown Road/Fourth Avenue roundabout.

The proposed site has an area of circa 1.1ha, of which approximately 0.35ha is comprising of the existing junction redevelopment, and is located at Units 66 & 67 Fourth Avenue, at the junction with Cookstown Road. The approximately 220m east of the Tallaght Hospital.

Refer to Figure 1 below for a site location map.

Figure 1 – Site Location Map

The site slopes from north to south and is bounded to the north by Fourth Avenue, to the east by Cookstown Road, and to the south and west by industrial units. The site is situated within an industrial area and is immediately surrounded predominantly by warehouses and industrial units with both sites currently consisting of a warehouse with surface parking. The site is located within the South Dublin County Council Development Plan 2016 - 2022 boundary with the zoning objective identified as REGEN-'To facilitate enterprise and/or residential-led regeneration'.

The proposed development consists of a mix of commercial units, a childcare facility, a gym, with 252 multi-level apartment units with an under-croft level for parking at surface level, surface water attenuation, water boosting and other plant and storage rooms.

The proposed development site has a vehicular entry point to the proposed under-croft parking facility via the Cookstown Road and a shared, bollard-controlled access via Fourth Avenue. There are planned road improvements by SDCC to construct a North-South Link Road connecting Cookstown Industrial Estate Road and through to Belgard Square North and to upgrade the Fourth Avenue/Cookstown Road junction as part of this submission.

The aim of this report is to provide information on the calculations, estimates and assumptions used to design the foul drains, surface water drains, SuDS systems, surface water attenuation and water supply for the proposed development.

Foul and surface water systems for the site will be separate and are designed in accordance with the requirements of South Dublin County Council, the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS), the Building Regulations and the recommendations of the DOE Recommendations for Site development works for Housing areas. In addition, surface water has been designed with reference to the 'The Planning System and Flood Risk Management Guidelines', the Greater Dublin Regional Code of Practice for drainage works and Irish Water Standards Details for water and wastewater.

2.0 SURFACE WATER ATTENUATION

Surface water attenuation system will be provided using an off-line Stormtech SC740 attenuation system. The attenuation facility will be located within the under-croft footprint, below the parking area of the proposed development.

Surface water discharge from the site will be controlled using a hydrobrake at the outlet from the attenuation system. The total volume of the attenuation system is 470m³

The hydraulic modelling software system 'WinDes' was used to calculate the attenuation volumes required. Maximum rainfall data from Extreme Rainfall Return Period values produced by Met Eireann (Rainfall Return Periods Table website) was used to input into WinDes to determine maximum flood volume. For Cookstown (708365, 728000 ITM):

SAAR = 782mm Ratio M560/M52d = 0.27 M560 = 18.6mm

As per current practice a 10% increase to rainfall figures within Windes was applied to allow for climate change.

Runoff from roads and footpaths was assumed to be 80% impermeable. Runoff from traditional roofs areas was assumed to be 100% impermeable. Runoff from green roofs are assumed to be 70% as at least 30% of the rainfall during an extreme event would be stored in the green roof/permeable pavement and only 70% of total rainfall will discharge to the site attenuation system during the duration of an extreme rainfall event.

The individual catchment characteristics are as follows: -

Catchment C	haracteristic	s	
Cookstown Phase 2	Area (m²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	2,060	1.00	2060.0
Roofs - Type 2 (Draining to SUDS features)	-	0.70	0.0
Roofs - Type 3 (Draining to Back Gardens)	-	0.00	0.0
Green Roofs	1,365	0.70	955.5
Green Roof over Basements/Podiums	785	0.70	549.5
Roads and Footpaths - Type 1 (Draining to gullies)	1,730	0.80	1384.0
Roads and Footpaths - Type 2 (Draining to Suds features)	-	0.70	0.0
Permeable Paving	-	0.50	0.0
Paved areas over Undercrofts/Podiums	670	1.00	670.0
Verges	890	0.15	133.5
Parks	-	0.15	0.0
Public Open Space	-	0.05	0.0
Effective Catchment Area (Impermeable)	0.575	Hectares	
Effective Catchment Runoff Coefficient	0.77		

The Greater Dublin Strategic drainage Study (GDSDS) recommends that surface water runoff from new developments is limited to 2I/s/ha or Qbar (calculated using the UK IH124 equation). As the development catchment area is approximately 0.75ha, this results in a Qbar value of 1.6 I/s, see appendix for calculation.

It should be noted that the existing development is a brownfield site which currently does not provide any attenuation measures, therefore this reduction in flow would result in a significant benefit to the downstream system capacity.

A calculation sheet has been appended to this report which shows how the attenuation volume and discharge rate were calculated.

3.0 INTERCEPTION STORAGE

It is current good practice in sustainable surface water drainage design that no run-off should directly pass to a receiving surface water system for rainfall depths of 5mm, therefore interception/infiltration storage should be provided at source where practicable. The volume of infiltration required is based on 5mm of rainfall depth from 80% of the runoff from impermeable areas and is calculated as follows:

Interception storage required = 7500m² x 0.8 x 0.005 = 30m³

Interception storage will be provided within the green roof on the apartment building roofs and podium slab. The green roof and permeable pavement will have a substrate/subbase depth of 100mm with a void ratio of 35%.

Interception storage provided = 2150m² x 0.1 x 0.35 = 75m³

The benefit of providing interception storage is that it allows some form of storage for small rainfall events which results in water evaporation and adsorption in small quantities, therefore there will be less run-off from the system in small rainfall events thus mimicking the natural response for the catchment. Also, the 150mm deep stone at the base of the geocellular attenuation facility will reduce the amount of run-off from the site as well as slowing down the rate of runoff.

4.0 TREATMENT VOLUME

It is also current good practice in sustainable surface water drainage design that a "treatment volume" is provided in order to prevent any pollutants or sediments discharging into river systems, additionally a 'treatment train' stormwater runoff management system should be applied. According to CIRIA document C697 the following treatment train approach is necessary:

Roofs – 1 Treatment method Paved Areas excluding Roads - 1 Treatment method Roads - 2 Treatment Methods

The volume of treatment required is based on 15mm of rainfall depth from 80% of the runoff from impermeable areas and is calculated as follows:

```
Treatment storage required = 7500m<sup>2</sup> x 0.8 x 0.015 = 90m<sup>3</sup>
```

As all runoff is routed through the petrol interceptor and silt trap manhole as part of the offline attenuation system this will provide treatment storage in the system. Furthermore, the green roofs will provide additional treatment storage.

5.0 SUDS FEATURES

The SuDS strategy adopted by South Dublin County Council aims to provide an effective system to mitigate the adverse effects of urban stormwater runoff on the environment by reducing runoff rates, volumes and frequency, reducing pollutant concentrations in stormwater, contributing to amenity, aesthetics and biodiversity enhancement where possible. In addition, SuDS features aim to replicate the natural characteristics of rainfall runoff for any site by providing control of run-off at source.

In terms of compliance with the principles outlined in the GDSDS (Greater Dublin Strategic Drainage Study) Regional Drainage Policies Volume 2 New Development and Sustainable Drainage Systems (SuDS), the introduction proposed extensive green roof system would provide ecological, aesthetic and amenity benefits and intercept and retain rainfall, at source, reducing the volume of runoff and attenuating peak flows.

<u>Green Roof</u>: Green roofs provide ecological, aesthetic and amenity benefits and intercept and retain rainfall, at source, reducing the volume of runoff and attenuating peak flows. Green roofs absorb most of the rainfall that they receive during ordinary events although they will only contribute to attenuation of flows for larger events. Additionally, green roofs treat surface water through removal of atmospherically deposited urban pollutants. A typical extensive green roof will comprise a plant layer, extensive substrate layer (typically 100mm deep), laid on a filter layer, water retention and drainage layer, protection layer and a separation layer.

Figure 2 – Typical Extensive Green Roof

<u>Petrol Interceptor</u>: A proprietary oil/water separator which prevents hazardous chemical and petroleum products from entering watercourses and public sewers. This is proposed at the outfall from the site.

<u>Cellular Attenuation System (Stormtech)</u>: A proprietary modular block or arch structure with a maintenance/inspection tunnel for providing underground surface water attenuation storage and can infiltrate runoff to the ground where the subgrade is suitable. The attenuation facility will be located within the under-croft footprint, below the parking area of the proposed development.

6.0 SURFACE WATER DRAINAGE SYSTEM

Surface water throughout the site will collected by a green roof system with addition roof and podium slab gullies draining via downpipes and pipe slung to the underside of the ground floor slab before discharging into the attenuation facility.

Flows from the attenuation facility will be throttled at greenfield runoff rates before discharging into the existing 450 diameter surface water sewer in running in an easterly direction on Fourth Avenue, to the north of the site.

Surface water drains were designed using the Rational Method to size the pipes for a 1-year storm event. The following parameters applied:

Return period 1 year Time of entry 4 minutes Pipe Ks 0.6mm (concrete) Minimum velocity 0.75 m/s Maximum velocity 3.0 m/s

The peak surface flow from the proposed development is 1.6l/s. The foul outfall pipe from the development would comprise a 225mm diameter pipe at a gradient of not flatter than 1 in 150. This pipe at full capacity of the sewer is estimated at 37.2l/s.

7.0 FOUL DRAINAGE

There is an existing 225mm diameter foul sewer in running in a northerly direction on the Cookstown Road, to the east of the site. Proposed foul drainage will discharge to this foul sewer.

Foul sewage within the site will be drained by a separate system via 150mm and 225mm diameter pipes. Where applicable, foul flows from the development would be slung under the podium slab and would connect to the proposed gravity sewers.

Foul sewers have been designed in accordance with the Building Regulations and in accordance with the EPA Treatment Systems for Small Communities, Business, Leisure and Hotel, DOE 'Recommendations for Site Development Works' and the recommendations of the 'Greater Dublin Strategic Drainage Study' (GDSDS) and Irish Water requirements.

The following design criteria have been applied in the design of foul sewers:

- (i) Pipe Ks 0.6 mm (uPVC)
- (ii) Minimum velocity 0.75 m/s (self-cleansing velocity)
- (iii) Maximum velocity 3 m/s
- (v) Minimum gradients:

No. of	Minimum Pipe Gradient
Connections	
1	100mm dia. @ 1:60 or self-cleansing gradient
2-8	150mm dia. @ 1:80 or self-cleansing gradient
>8	Min 150mm dia.; 1: DN or self-cleansing gradient

The peak flow from the proposed development is estimated at 5.651/s. The foul outfall pipe from the development would comprise a 225mm diameter pipe at a gradient of not flatter than 1 in 180. This pipe at full capacity of the sewer is estimated at 37.211/s.

Sewers and drains shall be laid to comply with the requirements of the Building Regulations 1997 in accordance with the recommendations contained in the Technical Guidance Documents, Section H (revised 2005) and Irish Water.

A calculation sheet has been appended to this report which indicates the peak foul flows.

8.0 FLOOD RISK

The subject site is located more than 1.1km from the Whitestown Stream, Additionally, the site is also located more than 12km from the coast and is therefore not prone to coastal flooding.

The ECFRAMS Flood Study Mapping indicates outside of the 0.1% Fluvial AEP Event and the site is therefore deemed to be within **Flood Zone C**, i.e. outside the 1000-year flood events. It is therefore not necessary to carry out a Site-Specific Flood Risk Assessment.

The sequential approach recommended by *"The Planning System and Flood Risk Management Guidelines for Planning Authorities"* has been complied with for the subject site as it is within Flood Zone C.

Floodinfo.ie showing OPW Flood Mapping

The Strategic Flood Risk Assessment for South Dublin County Council Development Plan 2016-2022 Fluvial Flood Zone Mapping was consulted and indicated that there was no risk of Fluvial Flooding.

South Dublin County Council Development Plan 2016-2022 Fluvial Flood Zone Map 15 Extract

The Office for Public Works (OPW) historical flood maps were consulted with regards to recorded flood events in the vicinity of the subject site. A map showing historical flood events within 2.5km of the subject site was generated. There were no recorded flood events within the immediate vicinity of the subject site, and it is therefore considered that there is a low likelihood of flooding from surrounding areas.

Floodmaps.ie showing no historical flooding event with 2.5km of site

5

9.0 WATER SUPPLY

The development will be serviced by a proposed 150mm diameter watermain which connects to the existing 150mm diameter watermain located at the eastern boundary of the proposed development.

These proposed watermains in turn will connect to a water booster and balancing system to be located in the plant room located on the ground floor/under-croft area of the proposed development. This booster system will store and pump potable water to all apartments and commercial units within the development. In addition to the watermain, a new fire-main will be provided within the carparking area of the development, below the podium slab. The external areas of the development will be served by existing fire hydrants together with additional hydrants to be located on the new 150mm diameter watermains.

A bulk water meter will be provided at the connection to the site from the existing watermain. This electromagnetic flow meter will include a remote telemetry unit and associated mini kiosk, to the requirements of SDCC Water Management Section and Irish Water.

The supply arrangements will be carried out to the requirements of Irish Water. The Peak Hour Water demand for the proposed development is estimated at 5.4l/s.

Refer to appendices for watermain and water supply calculations.

10.0 ACCESS

Vehicular access to the undercroft car park area would be via a new access road tied in to the Cookstown Road, at the southeast corner of the site. A shared, bollard-controlled access via Fourth Avenue will also be provided.

APPENDIX A

Water Services Records

i

Ĭ

Irish Water Webmap

© Ordnance Survey Ireland | Ordnance Survey Ireland |

July 6, 2016

.egend

- -- Surface
- Surface
- Surface
- --- Cascade
- Catchpit
- Hatchbox
- Eamphole
- ÷ Standard
- Other; Unknown
- + Gully
- Standard

Inish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be needed upon in the event of excavations or other works being carried out in the vicinity of the network. The orus is on the parties carriying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated.

snown but there presence should be anticipated. "Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network. (The Information?), Any representations and warrantles express or impled, are excluded to the fullest extent permitted by law. No liability shall be accepted in the any beam dimage considering without limitation, locs or profile arising out of or in correction with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 47 or e-mail dg@gasnetworks.ie – The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI e gas. All work in the vicity of the gas distribution and transmission network must be completed in accordance with the current edition of the Heath & Safety Authority publication, "Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded tee of charge at www.hsa.ie."

APPENDIX B

Surface Water Attenuation Calculations

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 308460, Northing: 228650,

Tot Tot <th>TON 6</th> <th>Inte</th> <th>rval</th> <th></th> <th>0</th> <th>~</th> <th>4</th> <th>Ľ</th> <th>0</th> <th>Years</th> <th>06</th> <th>C L</th> <th>75</th> <th>001</th> <th>031</th> <th>000</th> <th>250</th> <th>500</th>	TON 6	Inte	rval		0	~	4	Ľ	0	Years	06	C L	75	001	031	000	250	500
3.5, 5.2, 6.2, 7.6, 8.6, 9.4, 12.0, 12.1, 17.1, 20.1, 22.7, 23.6, 26.8, 29.2, 33.1, 36.1, 38.6, M/A, 5.5, 13.6, 13.0, 11.1, 14.1, 17.7, 20.2, 23.5, 53.6, 35.1, 36.1, 38.6, M/A, 5.5, 13.6, 15.9, 19.3, 21.6, 23.4, 25.5, 23.8, 33.1, 57.7, 64.7, 70.2, 74.7, M/A, 12.5, 13.6, 15.9, 19.3, 23.6, 26.8, 23.3, 37.5, 42.3, 46.0, 51.7, 55.2, 60.0, N/A, 12.5, 13.7, 18.5, 22.4, 9.2, 30.1, 37.5, 42.3, 47.3, 53.1, 57.7, 64.7, 70.2, 74.7, M/A, 12.5, 11.1, 15.9, 18.5, 27.9, 28.6, 37.5, 40.8, 47.3, 53.1, 57.7, 64.7, 70.2, 74.7, M/A, 12.5, 11.1, 15.9, 18.5, 22.4, 9.2, 70.7, 37.5, 41.8, 23.0, 22.5, 23.9, 41.7, 55.2, 99.7, 10.9, 73.7, 79.9, 85.0, N/A, 12.5, 11.6, 20.7, 23.6, 23.9, 41.7, 55.2, 94.1, 29.6, 29.2, 20.6, 27.3, 20.6, 29.3, 20.6, 29.7, 10.6, 12.7, 12.5, 12.6, 14.4, 192.5, 21.4, 20.6, 23.1, 40.3, 51.1, 24.	ő	DILLING ,	2 B		/ 7 V	ຕັບ ບ	й с ч	о г ч	ν σ τ α		, uc c c r	14 AL	10, 21		10 0 C	20 00	1007 20	1000 M
 4.2, 6.2, 7.3, 9.0, 10.1, 11.1, 14.1, 17.7, 20.2, 23.6, 26.8, 29.2, 33.1, 36.1, 38.6, W/A, 7.2, 10.5, 12.2, 14.9, 16.8, 18.2, 23.0, 28.6, 32.3, 37.5, 41.4, 42.0, 40.1, W/A, 9.5, 12.0, 19.3, 21.6, 23.4, 23.0, 28.6, 32.3, 37.5, 41.3, 46.0, 51.7, 56.2, 60.0, W/A, 11.1, 15.9, 18.5, 22.4, 23.0, 28.6, 32.3, 40.8, 47.3, 53.1, 57.7, 64.7, 70.2, 74.7, W/A, 12.5, 17.7, 20.6, 24.9, 27.0, 37.5, 46.9, 54.2, 66.8, 72.3, 99.9, 97.7, 79.9, 95.0, W/A, 11.4, 20.7, 20.7, 23.9, 28.9, 32.2, 34.8, 43.3, 52.9, 59.3, 66.8, 75.4, 82.6, 93.1, W/A, 20.7, 20.7, 23.9, 28.9, 32.2, 34.8, 43.3, 52.9, 59.3, 66.8, 75.4, 82.6, 93.1, W/A, 12.5, 117.1, 24.1, 27.9, 33.5, 37.5, 41.4, 47.7, 55.3, 67.3, 77.3, 96.3, 105.1, 113.5, 11		. с. С. С.	5.2,		6.2,	7.6,	.9.8	9.4.	12.0,	15.1,	17.1,	20.1,	22.7,	24.8,	28.1,	30.7,	32.8,	N/A
55, 80, 9, 9, 4, 11.6, 13.0, 14.2, 18.0, 22.5, 25.5, 29.8, 33.6, 36.7, 41.4, 45.0, 48.1, N/A, 95.1, 15.9, 12.2, 19.3, 21.6, 23.4, 23.9, 41.7, 46.9, 54.2, 65.3, 60.0, N/A, 95.1, 15.9, 19.5, 22.4, 25.0, 27.1, 33.9, 41.7, 46.9, 54.2, 60.8, 65.9, 73.7, 79.9, 85.0, N/A, 11.7, 22.0, 28.6, 37.1, 45.9, 56.3, 60.3, 77.3, 79.9, 85.0, N/A, 11.7, 22.1, 23.9, 28.9, 37.5, 49.3, 66.3, 77.6, 48.2, 79.9, 85.0, N/A, 11.7, 22.1, 23.9, 28.9, 35.1, 37.7, 56.3, 60.3, 77.7, 95.1, 70.2, 74.7, N/A, 11.6, 20.7, 23.9, 28.9, 37.3, 49.9, 60.9, 57.7, 56.3, 76.4, 82.6, 92.2, 99.7, 105.9, 11.7, 23.9, 28.9, 33.1, 37.2, 44.0, 34.8, 43.3, 52.9, 56.3, 76.4, 82.6, 92.2, 99.7, 105.9, 11.7, 27.9, 33.5, 31.1, 37.2, 44.1, 0.3, 49.3, 57.4, 63.3, 77.4, 12.5, 130.0, 144.3, 132.0, N/A, 22.5, 31.4, 137.2, 48.1, 53.3, 57.4, 77.5, 57.5, 160.5, 103.6, 113.5, 124.4, 132.0, N/A, 225.5, 31.4, 40.3, 57.4, 65.0, 77.1, 55.3, 57.2, 75.1, 108.6, 120.7, 118.3, 131.5, 113.2, 105.1, 113.5, 112.4, 132.0, N/A, 225.5, 31.4, 40.3, 57.4, 65.0, 77.1, 55.3, 57.2, 75.1, 108.6, 120.7, 118.3, 131.5, 113.2, 105.1, 113.5, 113.2, 107.1, 117.7, 132.1, 130.0, 144.3, 113.5, 113.2, 107.1, 117.7, 132.1, 130.0, 144.3, 115.3, 132.0, N/A, 225.2, 357.1, 65.0, 77.1, 77.3, 86.2, 96.0, 108.6, 120.7, 118.3, 131.5, 114.4, 130.3, 106.4, 196.3, 211.3, 91.4, 196.3, 211.3, 91.4, 196.3, 211.3, 91.4, 196.3, 211.3, 91.4, 196.3, 211.3, 91.4, 196.3, 211.3, 91.4, 196.3, 211.3, 91.4, 211.5, 134.1, 135.3, 144.7, 196.3, 211.3, 91.9, 200.3, 234.2, 65.9, 90.0, 95.3, 112.2, 130.4, 121.5, 113.4, 177.5, 138.1, 177.5, 138.9, 197.4, 209.2, 218.9, 237.3, 49.9, 65.9, 88.2, 99.9, 100.9, 116.5, 114.4, 114.3, 115.7, 118.1, 117.7, 132.1, 117.7, 132.1, 107.4, 217.5, 118.9, 197.4, 209.2, 218.9, 231.3, 257.4, 65.9, 88.2, 99.9, 60.0, 103.6, 115.6, 124.9, 114.5, 116.4, 117.5, 113.9, 114.3, 115.5, 114.4, 115.4, 114.4, 115.4, 155.4, 117.5, 138.4, 196.9, 210.9, 200.3, 234.2, 65.9, 65.9, 98.6, 115.6, 124.9, 114.5, 116.4, 114.4, 115.4, 114.4, 115.4, 114.4, 115.4, 156.4, 114.6, 165.5, 1144.7, 114.3, 115.5, 114.4, 115.4, 114.6, 16		4.2,	6.2,	_	7.3,	9.0,	10.1,	11.1,	14.1,	17.7,	20.2,	23.6,	26.8,	29.2,	33.1,	36.1,	38.6,	N/A ,
7.2,10.5,12.2,14.9,16.8,18.2,23.0,28.6,32.3,37.5,42.3,46.0,51.7,56.2,60.0, N/A 9.5,13.6,18.5,23.4,53.0,37.5,44.7,53.1,57.1,74.7,74.7, N/A 11.1,18.5,23.4,53.0,37.5,46.0,51.7,59.3,66.3,76.4,85.0, $87.6,$ 93.1, N/A 12.5,17.7,20.6,24.9,27.8,30.1,37.5,46.0,51.7,59.3,66.3,76.4,85.0,87.6,93.1, N/A 14.6,20.7,23.9,33.5,37.1,37.2,44.3,49.3,50.9,87.6,99.7,105.9, N/A 17.1,24.1,27.9,33.5,37.2,49.3,49.9,60.9,68.1,78.3,87.3,94.3,105.9, N/A 17.1,24.1,27.9,33.5,31.1,37.2,41.4,44.7,55.3,57.2,95.0,109.7,118.3,135.5,141.7,156.1, N/A 25.2,31.4,36.2,48.0,55.7,67.2,95.0,109.7,118.3,135.3,156.3,156.4,196.5,323.3,25.2,31.4,36.2,190.7,118.3,117.7,121.5,117.7,157.6,131.7,157.6,141.6,157.6,141.6,157.6,141.6,157.6,141.6,157.6,180.4,196.3,271.2,<		5.5,	8.0,	_	9.4,	11.6,	13.0,	14.2,	18.0,	22.5,	25.5,	29.8,	33.6,	36.7,	41.4,	45.0,	48.1,	N/A ,
9.5, 13.6, 15.9, 19.3, 21.6, 23.4, 29.4, 36.3, 40.8, 47.3, 53.1, 57.7, 64.7, 70.2, 74.7, N/A, 11.1, 15.9, 12.6, 22.6, 22.6, 86.9, 72.3, 80.9, 87.6, 93.1, N/A, 12.5, 17.1, 24.1, 27.9, 85.0, N/A, 14.6, 20.7, 23.9, 28.9, 32.2, 34.8, 43.3, 52.9, 59.3, 68.3, 76.4, 82.6, 92.2, 99.7, 105.9, N/A, 17.1, 24.1, 27.9, 23.5, 37.3, 49.9, 60.9, 68.1, 78.3, 87.3, 94.3, 105.1, 113.5, 120.5, N/A, 22.5, 31.6, 41.7, 55.3, 67.2, 75.1, 86.2, 96.0, 103.6, 113.5, 120.5, N/A, 22.5, 35.1, 44.1, 75.3, 57.2, 77.3, 86.3, 76.4, 82.6, 92.2, 99.7, 105.9, N/A, 22.5, 35.1, 44.1, 55.3, 57.2, 77.1, 86.2, 96.0, 103.6, 118.5, 131.5, 120.5, N/A, 22.5, 35.1, 44.1, 53.3, 57.4, 70.2, 74.4, 132.0, N/A, 25.2, 35.1, 44.1, 53.3, 57.4, 70.2, 77.1, 24.1, 71.5, 201.2, 77.1, 24.1, 57.1, 24.4, 132.0, 144.3, 155.1, 144.1, 55.2, 57.4, 81.6, 55.3, 57.2, 75.1, 86.2, 96.0, 100.6, 120.7, 130.0, 144.3, 155.1, 00.9, 221.3, 31.8, 43.2, 48.1, 53.3, 57.4, 70.5, 85.3, 95.0, 100.6, 120.7, 130.0, 144.3, 155.1, 150.1, N/A, 25.2, 35.1, 44.1, 75.8, 90.7, 107.1, 171.7, 54.9, 154.6, 164.5, 179.6, 180.4, 189.6, 221.3, 71.4, 413.7, 521.3, 71.4, 135.0, 114.3, 155.1, 164.4, 196.9, 213.0, 144.3, 155.1, 268.8, 77.1, 54.9, 155.7, 160.2, 180.4, 189.6, 221.3, 71.4, 135.0, 124.6, 154.6, 154.6, 164.5, 179.2, 180.4, 189.6, 221.3, 75.7, 57.1, 54.9, 155.7, 160.9, 213.0, 144.3, 155.7, 160.9, 200.3, 223.2, 37.3, 41.7, 54.9, 155.7, 157.8, 136.4, 195.9, 213.0, 226.2, 235.1, 268.8, 65.9, 141.7, 157.8, 136.4, 195.9, 213.0, 226.2, 236.1, 256.6, 126.6, 141.6, 155.5, 176.2, 214.4, 139.6, 223.1, 268.8, 65.9, 144.6, 155.6, 124.9, 115.6, 114.6, 155.6, 124.6, 155.6, 124.6, 155.6, 124.6, 155.6, 124.6, 155.7, 130.0, 226.2, 223.1, 268.8, 65.7, 184.9, 100.6, 127.1, 124.2, 114.3, 155.2, 120.9, 200.9, 200.9, 200.3, 223.2, 329.4, 257.1, 256.8, 257.3, 259.4, 257.2, 223.1, 268.8, 257.1, 256.9, 223.1, 268.8, 257.1, 256.9, 223.1, 268.8, 257.1, 256.8, 257.2, 237.1, 259.6, 223.2, 239.4, 268.8, 257.1, 259.6, 126.6, 126.6, 124.6, 115.6, 126.6, 124.6, 115.6, 124.9, 195.9, 217.2, 223.4, 210.9, 223.2, 239.4, 268.8, 257.1, 2		7.2,	10.5,		12.2,	14.9,	16.8,	18.2,	23.0,	28.6,	32.3,	37.5,	42.3,	46.0,	51.7,	56.2,	60.0,	N/A ,
<pre>11.1.1 15.9, 18.5, 22.4, 25.0, 27.1, 33.9, 41.7, 46.9, 54.2, 60.8, 65.9, 73.7, 79.9, 85.0, N/A, 12.5, 17.7, 20.6, 24.9, 27.8, 30.1, 37.5, 46.0, 51.7, 59.7, 66.8, 72.3, 80.0, 97.6, 93.1, N/A, 14.6, 20.7, 24.9, 22.9, 33.5, 37.3, 40.3, 49.9, 60.9, 68.1, 78.3, 87.3, 94.3, 105.1, 113.5, 105.9, N/A, 17.1, 24.1, 27.9, 33.5, 37.3, 40.3, 49.9, 60.9, 68.1, 78.3, 87.3, 94.3, 105.1, 113.5, 120.5, N/A, 19.2, 26.9, 31.1, 37.2, 41.4, 44.7, 55.3, 67.2, 75.1, 86.2, 96.0, 103.6, 115.3, 124.4, 132.0, N/A, 36.2, 43.2, 48.0, 51.7, 55.3, 67.2, 75.1, 86.2, 96.0, 103.6, 115.3, 124.4, 132.0, N/A, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 156.2, 186.7, 177.8, 209.2, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 159.1, 90.9, 200.3, 221.3, 41.7, 54.9, 61.7, 71.5, 780.0 82.9, 98.6, 115.6, 126.6, 141.6, 154.6, 197.5, 180.4, 189.6, 221.3, 41.7, 54.9, 61.7, 71.5, 780.0 82.9, 98.6, 115.6, 126.6, 141.6, 154.5, 159.2, 180.4, 189.6, 221.3, 41.7, 54.9, 61.7, 71.5, 780.0 82.9, 98.6, 115.6, 126.6, 141.6, 154.5, 169.2, 180.4, 189.6, 221.3, 429.9, 64.6, 721.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 125.8, 177.5, 131.8, 197.4, 209.2, 218.9, 223.1, 63.7, 80.9, 88.2, 97.3, 110.9, 118.6, 124.1, 143.3, 157.4, 177.15, 131.6, 196.3, 218.9, 223.1, 266.8, 223.4, 266.9, 222.9, 204.7, 224.2, 63.7, 81.2, 101.6, 111.5, 125.6, 134.7, 144.6, 165.5, 178.6, 196.3, 211.5, 223.4, 270.0, 223.6, 249.8, 284.2, 61.4, 101.6, 111.5, 125.6, 134.7, 144.5, 165.5, 178.6, 199.3, 211.4, 277.0, 223.6, 249.8, 263.3, 221.6, 81.4, 101.6, 111.5, 125.6, 134.7, 144.6, 165.5, 178.6, 196.3, 211.4, 276.0, 234.6, 263.7, 234.2, 92.0, 113.9, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 276.3, 289.4, 308.7, 324.2, 334.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 324.2, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, 104 45, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 256.9, 289.4, 308.7, 323.</pre>		9.5,	13.6,	_	15.9,	19.3,	21.6,	23.4,	29.4,	36.3,	40.8,	47.3,	53.1,	57.7,	64.7,	70.2,	74.7,	N/A ,
12.5, 17.7, 20.6, 24.9, 27.8, 30.1, 37.5, 46.0, 51.7, 59.7, 66.8, 72.3, 80.9, 87.6, 93.1, N/A, 17.1, 24.1, 27.9, 33.5, 37.3, 40.3, 52.9, 59.3, 68.3, 76.4, 82.6, 92.2, 99.7, 105.9, N/A, 19.2, 26.9, 31.1, 37.2, 41.4, 44.7, 55.3, 67.2, 98.7, 118.3, 113.5, 113.5, 120.5, N/A, 22.5, 31.4, 123.2, 48.0, 51.7, 63.7, 77.3, 86.2, 98.7, 109.7, 118.3, 133.5, 141.7, 150.1, N/A, 25.2, 31.4, 123.2, 67.6, 81.7, 55.3, 67.2, 98.7, 109.7, 118.3, 133.5, 141.7, 150.1, N/A, 25.2, 31.4, 153.3, 57.2, 75.1, 86.2, 98.7, 109.7, 118.3, 155.3, 164.4, 196.3, 21.8, 43.0, 61.7, 71.5, 85.3, 67.2, 98.7, 109.7, 118.3, 133.5, 141.7, 150.1, N/A, 25.2, 31.4, 55.7, 65.0, 71.1, 75.8, 59.3, 66.2, 98.7, 109.7, 118.3, 155.3, 164.4, 196.3, 21.3, 31.8, 43.0, 61.7, 71.5, 78.0, 82.9, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 177.8, 209.2, 209.2, 233.1, 49.9, 61.7, 71.5, 78.0, 82.9, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 177.8, 209.2, 213.3, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 177.8, 209.2, 231.3, 232.3, 257.1, 73.2, 257.1, 73.2, 231.3, 49.5, 221.3, 73.2, 49.5, 61.7, 717.8, 199.6, 221.3, 73.4, 49.5, 61.7, 711.5, 722.5, 90.0, 95.3, 112.2, 113.4, 144.5, 154.6, 154.6, 159.2, 180.4, 189.6, 221.3, 232.3, 57.1, 73.2, 132.2, 144.9, 157.6, 154.5, 177.6, 232.2, 235.1, 268.8, 65.7, 80.9, 88.2, 99.6, 101.9, 100.4, 143.3, 155.4, 171.5, 132.2, 144.9, 157.6, 124.6, 144.6, 155.1, 144.3, 155.6, 124.6, 144.6, 156.6, 141.6, 154.6, 199.3, 210.4, 227.0, 239.6, 224.9, 234.2, 65.9, 88.2, 99.6, 101.9, 100.9, 9115.9, 134.7, 154.8, 167.5, 194.6, 199.3, 210.4, 227.0, 239.6, 249.8, 268.4, 65.7, 80.9, 88.2, 110.3, 118.6, 124.9, 144.5, 155.6, 134.7, 144.3, 155.6, 124.9, 124.6, 129.3, 210.4, 227.0, 239.6, 249.8, 268.4, 269.2, 101.9, 100.9, 100.9, 101.9, 101.6, 111.5, 125.6, 134.7, 154.8, 167.5, 128.2, 209.2, 239.4, 209.2, 239.4, 209.2, 239.4, 209.2, 239.4, 209.2, 234.2, 292.4, 210.4, 227.0, 239.6, 249.8, 266.4, 292.2, 292.4, 270.9, 230.7, 324.2, 292.0, 101.6, 111.5, 1125.6, 124.6, 114.5, 126.5, 124.6, 129.3, 210.4, 227.0, 239.6, 249.8, 266.8, 202.		11.1,	15.9,	_	18.5,	22.4,	25.0,	27.1,	33.9,	41.7,	46.9,	54.2,	60.8,	65.9,	73.7,	79.9,	85.0,	N/A ,
14.6, 20.7, 23.9, 28.9, 32.2, 34.8, 43.3, 52.9, 59.3, 68.3, 76.4, 82.6, 92.2, 99.7, 105.9, N/A, 17.1, 24.1, 13.5, 120.5, N/A, 19.2, 31.1, 37.2, 41.4, 44.7, 55.3, 67.2, 98.7, 109.5, 115.3, 124.4, 132.0, N/A, 22.5, 31.4, 132.0, 144.1, 51.3, 57.4, 77.3, 86.2, 98.7, 109.5, 115.3, 124.4, 132.0, N/A, 22.5, 35.1, 40.3, 48.1, 53.3, 57.4, 77.3, 86.2, 98.7, 109.6, 115.3, 124.4, 132.0, N/A, 25.3, 57.4, 77.3, 86.2, 98.7, 109.6, 115.3, 124.4, 132.0, N/A, 25.2, 35.1, 40.3, 48.1, 53.3, 57.4, 70.5, 85.3, 95.0, 108.6, 120.7, 130.0, 144.3, 155.3, 164.4, 196.3, 31.8, 43.0, 65.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 168.7, 177.8, 209.2, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 168.7, 177.8, 209.2, 321.3, 49.9, 64.6, 72.1, 88.2, 90.6, 0.105.6, 114.6, 154.6, 166.5, 180.9, 200.3, 232.3, 49.9, 64.6, 72.1, 88.2, 92.9, 100.4, 105.1, 117.7, 132.2, 144.9, 154.5, 168.7, 177.8, 209.2, 213.0, 521.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 211.0, 225.2, 235.1, 268.8, 63.7, 88.2, 92.6, 100.9, 115.9, 114.5, 155.6, 144.6, 199.3, 211.6, 52.1, 218.9, 221.3, 232.3, 49.9, 64.6, 109.9, 115.9, 114.6, 155.6, 144.6, 199.3, 211.6, 221.3, 020.3, 223.2, 357.1, 557.1, 73.2, 88.2, 92.9, 100.4, 106.1, 124.1, 143.3, 155.6, 114.6, 155.6, 134.7, 155.6, 134.7, 142.0, 155.8, 171.5, 188.6, 199.3, 210.4, 221.3, 022.2, 235.1, 268.8, 63.7, 88.2, 92.6, 134.9, 136.5, 177.2, 233.6, 245.6, 263.3, 239.4, 268.8, 233.6, 245.6, 233.6, 245.6, 233.6, 245.6, 233.6, 245.6, 233.7, 347.4, 104.5, 112.5, 1135.6, 114.5, 155.6, 174.7, 197.9, 222.8, 238.2, 235.5, 236.4, 237.6, 238.5, 239.7, 347.4, 104.5, 112.5, 128.2, 177.2, 238.9, 276.3, 239.4, 308.7, 334.9, 373.9, 104.5, 104.5, 128.2, 1334.9, 373.9, 104.5, 1096.3, 211.5, 223.9, 276.3, 2334.9, 373.9, 104.5, 104.5, 1039.7, 334.2, 233.6, 245.6, 263.4, 233.6, 245.6, 263.3, 2334.9, 373.9, 104.5, 1139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 239.4, 308.7, 334.9, 373.9, 104.5, 104.5, 128.		12.5,	17.7,		20.6,	24.9,	27.8,	30.1,	37.5,	46.0,	51.7,	59.7,	66.8,	72.3,	80.9,	87.6,	93.1,	N/A ,
<pre>17.1, 24.1, 27.9, 33.5, 37.3, 40.3, 49.9, 60.9, 68.1, 78.3, 87.3, 94.3, 105.1, 113.5, 120.5, N/A, 19.2, 26.9, 31.1, 37.2, 41.4, 44.7, 55.3, 67.2, 75.1, 86.2, 96.0, 103.6, 115.3, 124.4, 132.0, N/A, 22.2.5, 33.1, 4, 36.2, 48.0, 51.7, 63.7, 77.3, 86.2, 98.7, 100.7, 1180.3, 131.5, 155.3, 164.4, 132.0, N/A, 25.2, 35.1, 48.8, 57.4, 63.2, 67.6, 81.7, 97.3, 107.4, 121.5, 133.0, 144.3, 155.3, 164.4, 196.3, 31.8, 43.0, 48.8, 57.4, 63.2, 67.6, 81.7, 97.3, 107.4, 121.5, 133.0, 144.3, 155.3, 177.8, 209.2, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 169.2, 180.4, 189.6, 221.3, 41.7, 54.9, 61.7, 71.5, 78.0, 82.9, 98.6, 115.6, 141.6, 154.6, 164.5, 177.9, 200.3, 232.3, 49.9, 64.6, 72.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 107.4, 209.2, 218.9, 221.7, 53.7, 80.9, 88.2, 97.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 197.4, 209.2, 218.9, 221.7, 63.7, 88.2, 97.3, 110.3, 118.6, 124.9, 134.7, 155.8, 167.5, 184.6, 196.1, 231.6, 245.6, 249.8, 231.7, 63.9, 88.2, 97.3, 110.3, 118.6, 124.9, 134.7, 157.8, 167.5, 184.6, 196.3, 210.4, 239.6, 249.8, 284.2, 63.9, 88.2, 97.3, 110.3, 118.6, 124.9, 134.7, 157.8, 167.5, 184.6, 196.3, 210.4, 239.6, 249.8, 284.2, 63.9, 88.2, 97.3, 110.3, 118.6, 124.9, 134.7, 157.8, 217.6, 233.6, 245.6, 263.4, 276.8, 263.3, 234.2, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 165.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 239.7, 347.4, 104.5, 128.2, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 238.7, 324.2, 92.0, 113.9, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 239.4, 308.7, 324.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 256.9, 245.6, 263.4, 209.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 256.9, 276.3, 239.4, 308.7, 324.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 276.3, 289.4, 308.7, 324.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 276.3, 289.4, 308.7, 324.9, 373.9, 104.5, 104.5, 128.2, 159.6, 166.3, 174.1,</pre>		14.6,	20.7,		23.9,	28.9,	32.2,	34.8,	43.3,	52.9,	59.3,	68.3,	76.4,	82.6,	92.2,	99.7,	105.9,	N/A ,
<pre> 19.2, 26.9, 31.1, 37.2, 41.4, 44.7, 55.3, 67.2, 75.1, 86.2, 96.0, 103.6, 115.3, 124.4, 132.0, N/A, 25.2, 35.1, 48.1, 53.3, 57.4, 77.3, 86.2, 98.7, 109.7, 118.3, 131.5, 141.7, 150.1, N/A, 25.2, 35.1, 48.1, 55.7, 67.6, 81.7, 97.3, 107.4, 121.5, 133.8, 143.2, 155.3, 164.4, 196.3, 37.1, 493.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 168.7, 177.8, 209.2, 37.1, 494.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 169.4, 189.6, 221.3, 411.7, 54.9, 64.5, 179.5, 190.9, 200.3, 232.3, 411.7, 54.9, 64.6, 179.5, 190.9, 200.3, 232.3, 41.7, 54.9, 64.6, 77.1, 82.9, 90.0, 95.3, 112.2, 130.4, 144.6, 154.6, 164.5, 179.5, 190.9, 200.3, 232.3, 411.7, 54.9, 64.6, 177.8, 299.2, 218.9, 221.3, 63.7, 77.8, 57.1, 77.2, 82.9, 98.6, 115.6, 124.1, 147.3, 155.4, 171.9, 186.1, 196.9, 218.9, 221.3, 251.7, 57.1, 73.2, 89.6, 101.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 218.0, 200.3, 232.3, 63.7, 374.2, 63.7, 80.9, 80.6, 101.9, 109.9, 111.5, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 218.0, 223.6, 248.6, 66.3, 200.7, 234.2, 96.3, 211.5, 223.6, 249.8, 263.3, 298.4, 20.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 111.5, 125.6, 114.5, 155.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 233.6, 283.6, 233.6, 245.6, 263.3, 234.9, 373.9, 104.5, 113.9, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 292.0, 113.9, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 292.0, 113.9, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 233.6, 245.6, 263.4, 276.8, 237.7, 324.2, 206.0, 284.6, 238.6, 233.6, 245.6, 263.4, 276.8, 237.7, 324.2, 202.0, 113.9, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 238.7, 334.9, 373.9, 104.5, 128.2, 139.4, 101.6, 101.6, 101.6, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 239.4, 308.7, 324.2, 334.9, 373.9, 104.5, 128.2, 134.6, 129.0, 124.6, 129.0, 124.6, 129.0, 124.6, 124.9, 125.6, 124.9, 126.2, 134.7, 124.2, 128.2, 134.6, 129.2, 238.2</pre>	_	17.1,	24.1,	_	27.9,	33.5,	37.3,	40.3,	49.9,	60.9,	68.1,	78.3,	87.3,	94.3,	105.1,	113.5,	120.5,	N/A ,
<pre>22.5, 31.4, 36.2, 43.2, 48.0, 51.7, 63.7, 77.3, 86.2, 98.7, 109.7, 118.3, 131.5, 141.7, 150.1, N/A, 25.2, 35.1, 40.3, 48.1, 53.3, 57.4, 70.5, 85.3, 95.0, 108.6, 120.7, 130.0, 144.3, 155.3, 164.4, 196.3, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 169.2, 180.4, 189.6, 221.3, 47.9, 64.6, 75.7, 71.5, 78.0, 82.9, 98.6, 115.6, 126.6, 141.6, 154.6, 164.7, 177.8, 200.3, 232.3, 49.9, 64.6, 7, 71.5, 78.0, 82.9, 98.6, 115.6, 126.6, 141.6, 154.6, 164.7, 200.3, 232.3, 49.9, 64.6, 7, 71.5, 78.0, 82.9, 98.6, 112.6, 126.6, 141.6, 154.6, 164.5, 179.5, 190.9, 200.3, 232.3, 49.9, 88.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 213.0, 225.2, 236.1, 268.8, 63.7, 80.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 165.6, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 129.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.9, 277.6, 289.4, 308.7, 334.9, 373.9, 104.5, 129.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 324.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model</pre>		19.2,	26.9,		31.1,	37.2,	41.4,	44.7,	55.3,	67.2,	75.1,	86.2,	96.0,	103.6,	115.3,	124.4,	132.0,	N/A ,
<pre>25.2, 35.1, 40.3, 48.1, 53.3, 57.4, 70.5, 85.3, 95.0, 108.6, 120.7, 130.0, 144.3, 155.3, 164.4, 196.3, 31.8, 43.0, 48.8, 57.4, 63.2, 67.6, 81.7, 97.3, 107.4, 121.5, 133.8, 143.2, 157.6, 168.7, 177.8, 209.2, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 169.2, 180.4, 189.6, 221.3, 41.7, 54.9, 61.7, 71.5, 78.0, 92.9, 98.6, 115.6, 126.6, 141.6, 154.6, 164.5, 179.5, 190.9, 200.3, 232.3, 45.9, 64.6, 72.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 213.0, 239.6, 249.8, 284.2, 63.7, 80.9, 89.6, 101.9, 109.9, 115.9, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 227.0, 239.6, 249.8, 284.2, 63.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 277, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 174.9, 128.9, 217.6, 233.6, 245.6, 263.4, 277, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 174.9, 198.9, 217.6, 233.6, 245.6, 263.4, 277, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 174.9, 198.9, 217.6, 233.6, 245.6, 263.4, 277, 324.2, 92.0, 113.9, 124.6, 139.7, 141.5, 162.6, 172.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 233.2, 289.4, 308.7, 324.9, 373.9, not available</pre>		22.5,	31.4,		36.2,	43.2,	48.0,	51.7,	63.7,	77.3,	86.2,	98.7,	109.7,	118.3,	131.5,	141.7,	150.1,	N/A ,
31.8, 43.0, 48.8, 57.4, 63.2, 67.6, 81.7, 97.3, 107.4, 121.5, 133.8, 143.2, 157.6, 168.7, 177.8, 209.2, 37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 179.5, 190.9, 200.3, 232.3, 41.7, 54.9, 64.6, 72.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 89.6, 110.3, 115.9, 115.2, 130.4, 171.5, 186.1, 196.9, 213.0, 225.2, 235.1, 268.8, 63.7, 171.5, 181.6, 154.6, 154.6, 154.6, 154.6, 154.6, 154.6, 164.5, 172.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 89.6, 101.9, 109.9, 115.9, 114.2, 155.4, 171.9, 186.1, 196.9, 213.0, 225.2, 235.1, 268.8, 63.7, 81.4, 101.6, 111.5, 125.6, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 270.0, 239.6, 249.8, 284.2, 69.9, 88.2, 171.5, 122.6, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 270.0, 239.6, 249.8, 284.2, 69.9, 88.2, 101.9, 100.9, 115.9, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 277.0, 239.6, 244.8, 284.2, 69.9, 88.2, 171.5, 122.6, 134.7, 144.6, 165.5, 1778.6, 199.3, 210.4, 276.8, 263.3, 298.4, 292.4, 101.6, 111.5, 125.6, 134.7, 141.5, 165.5, 1778.6, 196.3, 2171.5, 222.9, 240.0, 252.8, 263.3, 298.4, 292.0, 113.9, 124.6, 156.6, 179.0, 202.5, 2177.2, 236.8, 253.5, 244.6, 268.7, 334.7, 344.2, 104.5, 124.6, 156.6, 179.0, 202.5, 2177.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 344.2, 40.4, 104.5, 126.6, 139.7, 144.5, 156.6, 124.9, 197.9, 222.8, 233.2, 258.9, 276.3, 238.4, 276.8, 287.7, 324.2, 40.4, 104.5, 156.6, 179.0, 202.5, 2177.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 344.2, 474.2, 104.5, 128.2, 159.8, 155.6, 144.6, 157.2, 238.2, 258.9, 276.3, 238.6, 233.2, 334.9, 373.9, 373.9, 104.5, 104.5, 128.2, 156.6, 288.2, 233.2, 234.9, 373.9, 373.9, 104.5, 104.5, 128.2, 158.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, 104.5, 104.5, 106.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, 104.5, 104.5, 128.2, 289.4, 308.7,		25.2,	35.1,	-	10.3,	48.1,	53.3,	57.4,	70.5,	85.3,	95.0,	108.6,	120.7,	130.0,	144.3,	155.3,	164.4,	196.3,
37.1, 49.4, 55.7, 65.0, 71.1, 75.8, 90.7, 107.1, 117.7, 132.2, 144.9, 154.5, 169.2, 180.4, 189.6, 221.3, 41.7, 54.9, 61.7, 71.5, 78.0, 82.9, 98.6, 115.6, 126.6, 141.6, 154.6, 164.5, 179.5, 190.9, 200.3, 232.3, 49.9, 64.6, 72.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 213.0, 225.2, 235.1, 268.8, 63.7, 80.9, 88.2, 97.3, 110.3, 115.9, 115.9, 115.9, 116.5, 178.6, 199.3, 211.5, 222.9, 240.0, 239.6, 249.8, 284.2, 63.7, 80.9, 88.2, 97.3, 110.3, 118.6, 124.4, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 255.2, 235.1, 268.4, 81.4, 101.6, 111.5, 125.6, 134.7, 144.5, 165.5, 178.6, 199.3, 211.5, 222.9, 240.0, 255.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 174.1, 197.9, 202.5, 217.2, 236.8, 245.6, 249.8, 284.2, 92.0, 113.9, 124.6, 133.7, 144.5, 165.5, 178.6, 196.9, 217.6, 233.6, 245.6, 263.3, 298.4, 274.2, 92.0, 113.9, 124.6, 134.7, 141.5, 165.5, 178.6, 198.9, 217.6, 233.6, 245.6, 263.3, 209.7, 347.2, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 344.9, 373.9, 104.5, 124.6, 155.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 3344.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 232.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 3344.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 232.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 3344.9, 373.9, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 232.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 3344.9, 373.9, 104.5, 128.6, 106.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 3344.9, 373.9, 104.5, 104.5, 104.5, 106.5, 176.2, 238.2, 238.2, 258.9, 276.3, 234.9, 373.9, 373.9, 104.5, 104.5, 105.5, 104.5, 106.5		31.8,	43.0,	4	18.8,	57.4,	63.2,	67.6,	81.7,	97.3,	107.4,	121.5,	133.8,	143.2,	157.6,	168.7,	177.8,	209.2,
<pre>41.7, 54.9, 61.7, 71.5, 78.0, 82.9, 98.6, 115.6, 126.6, 141.6, 154.6, 164.5, 179.5, 190.9, 200.3, 232.3, 49.9, 64.6, 72.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 213.0, 225.2, 235.1, 268.8, 63.7, 80.9, 89.6, 101.9, 109.9, 115.9, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 227.0, 239.6, 249.8, 284.2, 69.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 199.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.77, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DF) Model</pre>		37.1,	49.4,		55.7,	65.0,	71.1,	75.8,	90.7,	107.1,	117.7,	132.2,	144.9,	154.5,	169.2,	180.4,	189.6,	221.3,
<pre>49.9, 64.6, 72.1, 82.9, 90.0, 95.3, 112.2, 130.4, 142.0, 157.8, 171.5, 181.8, 197.4, 209.2, 218.9, 251.7, 57.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 213.0, 225.2, 235.1, 268.8, 63.7, 80.9, 89.6, 101.9, 109.9, 115.9, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 227.0, 239.6, 249.8, 284.2, 69.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 1234.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 246.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model</pre>		41.7,	54.9,	_	51.7,	71.5,	78.0,	82.9,	98.6,	115.6,	126.6,	141.6,	154.6,	164.5,	179.5,	190.9,	200.3,	232.3,
<pre>57.1, 73.2, 81.3, 92.9, 100.4, 106.1, 124.1, 143.3, 155.4, 171.9, 186.1, 196.9, 213.0, 225.2, 235.1, 268.8, 63.7, 80.9, 89.6, 101.9, 109.9, 115.9, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 227.0, 239.6, 249.8, 284.2, 69.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model</pre>		49.9,	64.6,		72.1,	82.9,	90.06	95.3,	112.2,	130.4,	142.0,	157.8,	171.5,	181.8,	197.4,	209.2,	218.9,	251.7,
 63.7, 80.9, 89.6, 101.9, 109.9, 115.9, 134.7, 154.8, 167.5, 184.6, 199.3, 210.4, 227.0, 239.6, 249.8, 284.2, 69.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available not available lues are derived from a Depth Duration Frequency (DDF) Model 		57.1,	73.2,	_	31.3,	92.9,	100.4,	106.1,	124.1,	143.3,	155.4,	171.9,	186.1,	196.9,	213.0,	225.2,	235.1,	268.8,
<pre>69.9, 88.2, 97.3, 110.3, 118.6, 124.9, 144.6, 165.5, 178.6, 196.3, 211.5, 222.9, 240.0, 252.8, 263.3, 298.4, 81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model</pre>		63.7,	80.9,	_	39.6, 1	01.9,	,09.9,	115.9,	134.7,	154.8,	167.5,	184.6,	199.3,	210.4,	227.0,	239.6,	249.8,	284.2,
<pre>81.4, 101.6, 111.5, 125.6, 134.7, 141.5, 162.6, 184.9, 198.9, 217.6, 233.6, 245.6, 263.4, 276.8, 287.7, 324.2, 92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model</pre>		69.9,	88.2,		97.3, 1	10.3,	118.6,	124.9,	144.6,	165.5,	178.6,	196.3,	211.5,	222.9,	240.0,	252.8,	263.3,	298.4,
92.0, 113.9, 124.6, 139.7, 149.3, 156.6, 179.0, 202.5, 217.2, 236.8, 253.5, 266.0, 284.6, 298.5, 309.7, 347.4, 104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model		81.4,	101.6,	H	11.5, 1	25.6,	134.7,	141.5,	162.6,	184.9,	198.9,	217.6,	233.6,	245.6,	263.4,	276.8,	287.7,	324.2,
<pre>104.5, 128.2, 139.8, 156.0, 166.3, 174.1, 197.9, 222.8, 238.2, 258.9, 276.3, 289.4, 308.7, 323.2, 334.9, 373.9, not available lues are derived from a Depth Duration Frequency (DDF) Model</pre>		92.0,	113.9,	H 	24.6, 1	39.7,	149.3,	156.6,	179.0,	202.5,	217.2,	236.8,	253.5,	266.0,	284.6,	298.5,	309.7,	347.4,
not available lues are derived from a Depth Duration Frequency (DDF) Model		104.5,	128.2,	н —	39.8, 1	56.0,	166.3,	174.1,	197.9,	222.8,	238.2,	258.9,	276.3,	289.4,	308.7,	323.2,	334.9,	373.9,
lues are derived from a Depth Duration Frequency (DDF) Model	not	availa	ble															
	lues	are de	rived fro	vm a I	Depth D	uration	I Frequ	ency (D	DF) Mod	lel								

For details refer to: 'Fitzgerald D. L. (2007), Bstimates of Point Rainfall Frequencies, Technical Note No. 61, Met Bireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

		Using IO	H Report 12	Iculation 4 for Sites < 2	5 km ^²			
			Catchme Cookstowr	nt Name n Phase 2				
¹ Q _{bar} = 0.00108	* (AREA) ^{0.89} (SAAR	.) ^{1.17} (SOIL) ^{2.17}		Estimation of less than 25 ki	QBAR from m ² using the	IOH Repo 3 variabl	rt 124 for cato e equation	hments
AREA = 0.75	На	Overall Catchme interpolated for s	nt Area (Hecta maller areas.	ares) For catchm	ents < 50 hect	ares in area	ı, flow rates are	linearly
AREA = 0.008	km ²	Area of the Catch	hment (km²)					
SAAR = 782	mm	Standard Annual	Average Rair	nfall (mm)				
	1	Soil Type Expres	sed as a	Soil 1	Soil 2	Soil 3	Soil 4	Soil 5
SOIL = 0.30		Percentage		0	100	0	0	0
		SOIL Value		0.15	0.30	0.40	0.45	0.50
M5 ₆₀ 18.6	mm							
M5 _{2day} 67.6	mm							
Ratio M5 ₆₀ /M5 ₂₀	a 0.275	Soil index value Soils from Winter	(SPR) calcula r Rainfall Acce	ited from Flood S optance Rate .	tudies Report	Vol V Fig I 4	4.18(1) - The Cla	assification
				4	⁴ QBar from Site	with Factor	ial Error Allowan	ce
	Flood Return Event	⁵ Growth Factor	Permitted Flow (I/s)		F	r ² =	0.847 71	
	1	0.85	1.3		F	fse =	1.651	
	QBAR	1	1.6		-			
	10	1.67	2.6		L	Q' _{bar}	= 2.57	l/s
	30	2.1	3.3		(With Allow	ance for the s	tandard factorial e	error)
	50	2.33	3.6	L				
	200	2.6	4.0					
Pro-rata based on	50 Ha Site area to c	alculate Qbar	- 	Q _{bar} =	2.	1	l/s/Ha	
Q _{bar} =				bui				
Q _{bar} =								
Q _{bar} =	1.6	l/s					-	
Q _{bar} =	1.6	l/s Catchment Cl	haracteristic	S	C#1	(m ²)	1	
Q _{bar} =	1.6	l/s Catchment Cl	haracteristic	S Runoff Coeff.	Effective A	Area (m²)		
Q _{bar} = Q _{bar} = Q _{bar} = Cookstown Phase 2 Roofs - Type 1 (Drain Roofs - Type 2 (Drain	1.6 ning to gullies) ning to SUDS features)	l/s Catchment Cl	haracteristic Area (m²) 2,060	S Runoff Coeff. 1.00 0.70	Effective A 2060 0.0	Area (m²) 0.0		
Q _{bar} = Q _{bar} [Q _{bar}] = Cookstown Phase 2 Roofs - Type 1 (Drain Roofs - Type 2 (Drain Roofs - Type 3 (Drain	1.6 ning to gullies) ning to SUDS features) ning to Back Gardens)	l/s Catchment Cl	haracteristic Area (m²) 2,060	Runoff Coeff. 1.00 0.70 0.00	Effective A 2060 0.0	Area (m²) 3.0 3.0		
Q _{bar} = Q _{bar} [Q _{bar}] = Cookstown Phase 2 Roofs - Type 1 (Drair Roofs - Type 2 (Drair Roofs - Type 3 (Drair Green Roofs	1.6 ning to gullies) ning to SUDS features) ning to Back Gardens) sements/Podiums	I/s Catchment Cl	naracteristic Area (m²) 2,060 - - 1,365 785	Runoff Coeff. 1.00 0.70 0.00 0.70 0.70	Effective A 2060 0.0 955 549	Area (m²) 0.0 0 0 .5 .5		
Q _{bar} = Q _{bar[rural]} = Cookstown Phase 2 Roofs - Type 1 (Drail Roofs - Type 3 (Drail Roofs - Type 3 (Drail Green Roofs Green Roof over Bas Roads and Footpath	1.6 ning to gullies) ning to SUDS features) ning to Back Gardens) sements/Podiums s - Type 1 (Draining to	I/s Catchment Cl	haracteristic Area (m²) 2,060 - - - 1,365 785 1,730	Runoff Coeff. 1.00 0.70 0.70 0.70 0.70 0.70 0.80	Effective A 206(0.0 955 549 1384	Area (m²) 0.0 0 0 .5 .5 4.0		
Q _{bar} = Q _{bar} = Q _{bar} = Cookstown Phase 2 Roofs - Type 1 (Drain Roofs - Type 2 (Drain Streen Roof over Bas Sreen Roof over Bas Roads and Footpath Roads and Footpath	1.6 ning to gullies) ning to SUDS features) ning to Back Gardens) sements/Podiums s - Type 1 (Draining to s - Type 2 (Draining to	I/s Catchment Cl gullies) Suds features)	naracteristic Area (m²) 2,060 - - - 1,365 785 1,730 -	Runoff Coeff. 1.00 0.70 0.00 0.70 0.70 0.80 0.70	Effective A 2060 0.0 0.0 955 5499 1384 0.0	Area (m ²) 0.0) .5 .5 4.0		
Q _{bar} = Q _{bar} =	1.6 hing to gullies) hing to SUDS features) hing to Back Gardens) sements/Podiums s - Type 1 (Draining to s - Type 2 (Draining to bigercrofts/Podiums	I/s Catchment Cl gullies) Suds features)	haracteristic Area (m²) 2,060 - 1,365 7,85 1,730 - - - 670	Runoff Coeff. 1.00 0.70 0.00 0.70 0.80 0.70 0.50 1.00	Effective A 2066 0.0. 955 549 1388 0.0. 0.0. 670	Area (m ²) 0.0 1.5 1.5 4.0 0		
Q _{bar} = Q _{bar} = Q _{bar} (rural) = Cookstown Phase 2 Roofs - Type 1 (Drain Roofs - Type 2 (Drain Roofs - Type 2 (Drain Roofs - Type 3 (Drain Roofs - T	1.6 ning to guilles) ning to SUDS features) ning to Back Gardens) sements/Podiums s - Type 1 (Draining to s - Type 2 (Draining to ndercrofts/Podiums	I/s Catchment Cl gullies) Suds features)	haracteristic Area (m²) - - 1,365 785 1,730 - - - 670 890	Runoff Coeff. 1.00 0.70 0.00 0.70 0.70 0.80 0.70 0.50 1.00 0.15	Effective A 2060 0.0. 955 549 1384 0.0. 0.0. 6700 133	Area (m ²) 0.0 1.5 1.5 4.0 0 1.0 1.5 .5		
Q _{bar} = Q _{bar} (rural) = Q _{bar} (rural) = Cookstown Phase 2 Roofs - Type 1 (Drail Roofs - Type 2 (Drail Roofs - Type 3 (Drail) Roofs - Typ	1.6 ning to guilles) ning to SUDS features) ning to Back Gardens) sements/Podiums s - Type 1 (Draining to s - Type 2 (Draining to adercrofts/Podiums	I/s Catchment Cl gullies) Suds features)	haracteristic Area (m²) 2,060 - 1,365 7,85 1,730 - - 670 890 -	Runoff Coeff. 1.00 0.70 0.00 0.70 0.70 0.80 0.70 0.50 1.00 0.15 0.15	Effective A 2060 0.0. 955 5449 1384 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.	Area (m ²) 0.0 1.5 5.5 4.0 0 .0 .5 0 0 0 0 0 0 0 0 0 0 0 0 0		

					Page 1
					Micco
Date 20/08/2020 08:44	Designed	by			
File COOKSTOWN PHASE 2 SITE	Checked 1	by			Drainage
Innovyze	Source C	ontrol 3	2018.1		
Summary of Results for	or 100 ye	ar Retu	rn Period	(+10%)	
Half D	rain Time : 206	9 minutes.			
Storm Max Max Event Level Dept	Max Th Infiltration	Max Control Σ	Max Max Outflow Volume	Status	
(m) (m)	(1/s)	(1/s)	(1/s) (m³)		
15 min Summer 102.197 0.25	0.2	1.3	1.5 95.0	ок	
30 min Summer 102.291 0.35 60 min Summer 102.391 0.45	1 0.2	1.3	1.5 129.9	0 K	
120 min Summer 102.499 0.55	9 0.2	1.3	1.5 206.5	οĸ	
180 min Summer 102.565 0.62	5 0.2	1.3	1.5 231.1	0 K	
240 min Summer 102.613 0.67	3 0.2 9 0.2	1.3	1.5 248.7	OK	
480 min Summer 102.724 0.78	4 0.2	1.4	1.6 289.9	0 K	
600 min Summer 102.757 0.81	7 0.2	1.4	1.6 301.8	ОК	
720 min Summer 102.780 0.84	0.2	1.5	1.6 310.6	ок	
960 min Summer 102.811 0.87	1 0.2	1.5	1.7 322.0	OK	
2160 min Summer 102.830 0.89	4 0.2 00 0.2	1.5	1.7 328.9	OK	
2880 min Summer 102.819 0.87	9 0.2	1.5	1.7 324.8	ок	
4320 min Summer 102.796 0.85	6 0.2	1.5	1.6 316.4	ок	
5760 min Summer 102.769 0.82	9 0.2	1.4	1.6 306.6	ок	
8640 min Summer 102.740 0.80	0.2 9 0.2	1.4	1.6 295.6	OK	
10080 min Summer 102.677 0.73	0.2	1.4	1.6 272.4	οĸ	
15 min Winter 102.228 0.28	8 0.2	1.3	1.5 106.6	ок	
30 min Winter 102.335 0.39	0.2	1.3	1.5 145.8	ок	
60 min Winter 102.446 0.50	96 0.2 Ng 0.2	1.3	1.5 187.2	OK	
180 min Winter 102.645 0.70	0.2	1.4	1.5 260.7	οĸ	
240 min Winter 102.701 0.76	0.2	1.4	1.6 281.1	о к	
360 min Winter 102.779 0.83	9 0.2	1.5	1.6 310.0	ок	
400 IIII WIICEP 102.855 0.85	.5 0.2	1.5	1.7 525.5	U K	
Storm	Rain Floode	d Discharge	Time-Peak		
Event	(mm/hr) Volume	Volume	(mins)		
	()	(m.)			
15 min Summer	89.558 0.	96.4	19		
30 min Summer	61.519 0.	0 125.6	34		
60 min Summer 120 min Summer	25,136 0.	a 171.6 a 216.6	124		
180 min Summer	19.065 0.	243.6	184		
240 min Summer	15.631 0.	244.8	242		
360 min Summer	11.789 0.	245.5	362		
600 min Summer	8.242 0.	246.7	402		
720 min Summer	7.251 0.	250.6	722		
960 min Summer	5.923 0.	256.4	962		
1440 min Summer	4.451 0.	263.0	1440		
2160 min Summer 2880 min Summer	2.719 A	0 508.2 0 502.0	2216		
4320 min Summer	2.035 0.	9 482.0	3024		
5760 min Summer	1.655 0.	685.4	3864		
7200 min Summer	1.411 0.	a 729.9	4680		
10080 min Summer	1.108 0.	803.1	6352		
15 min Winter	89.558 0.	0 108.0	19		
30 min Winter	61.519 0.	9 123.8	34		
60 min Winter	59.838 0. 25.136 0.	a 192.2	64		
180 min Winter	19.065 0.	245.3	180		
240 min Winter	15.631 0.	246.0	240		
360 min Winter	11.789 0.	a 248.5	358		
400 mill Willter	5.055 0.	202.0			
©198	2-2018 Ir	novyze			

							Page 2
							Micco
Date 20/08/2020 08:44	Desi	gned 1	bv				MILIU
Pilo COOVERONN DUNER 2 STAR	Char	9110 G	~				Drainage
FILE COORSTOWN FRASE 2 SITE	Chec	Ked b	Y				
Innovyze	Sour	ce Co:	ntrol 3	2018.1	_		
Summary of Results fo	or 10	0 yea	r Retu	rn Per	riod	(+10%)	
Storm Max Max		lax	Max	Max	Max	Status	
(m) (m)	n 10711	l/s)	(1/s)	(1/s)	(m ³)		
600 min Winter 102.872 0.93 720 min Winter 102.903 0.96	3	0.2	1.5	1.7	344.6 355.8	ОК	
960 min Winter 102.945 1.00	5	0.2	1.6	1.7	371.4	0 К	
1440 min Winter 102.986 1.04	6	0.2	1.6	1.8	386.4	OK	
2880 min Winter 102.992 1.05 2880 min Winter 102.976 1.03	6	0.2	1.6	1.8	383.0	οĸ	
4320 min Winter 102.936 0.99	6	0.2	1.6	1.7	368.2	ОК	
5760 min Winter 102.892 0.95 7200 min Winter 102.843 0.90	3	0.2	1.5	1.7	351.9 333.6	OK	
8640 min Winter 102.791 0.85	1	0.2	1.5	1.6	314.4	ок	
10080 min Winter 102.739 0.79	9	0.2	1.4	1.6	295.2	ОК	
Storm Event	Rain (mm/hr)	Flooded Volume	Volume	Time-Pea (mins)	ak		
	(,,	(m ³)	(m ³)	(
600 min Winter	8 242		256 7	50	99		
720 min Winter	7.251	0.0	261.3	76	8		
960 min Winter	5.923	0.0	267.7	93	34		
2160 min Winter	3.338	0.0	519.9	201	12		
2880 min Winter	2.719	0.0	517.6	230	94		
4320 min Winter 5760 min Winter	2.035	0.0 0.0	510.8	324	10 52		
7200 min Winter	1.411	0.0	817.3	504	18		
8640 min Winter 10080 min Winter	1.238	0.0	860.9	596	58		
10000 mill Willer	1.100	0.0	005.7	00.			
(R) 1 G 0	2-201	18 Tree	000028				
G198	2-20.	TO THE	10vyze				

		Page 3
		Micro
Date 20/08/2020 08:44	Designed by	Drainage
FILE COOKSTOWN PHASE 2 SITE	Checked by	
111100728	Source Control 2010.1	
Raj	infall Details	
Rainfall Model Return Period (years) Region Scot M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 100 Cv (Summer) 0.750 land and Ireland Cv (Winter) 0.840 18.600 Shortest Storm (mins) 15 0.270 Longest Storm (mins) 10080 Yes Climate Change % +10	
Tim	e Area Diagram	
т	otal Area (ha) 0.575	
	Time (mins) Area From: To: (ha)	
	0 4 0.575	
Tim	e Area Diagram	
Т	otal Area (ha) 0.000	
	Time (mins) Area From: To: (ha)	
	0 4 0.000	
©198	2-2018 Innovyze	

						Page 4
Data 20/00/20	000.00.44					MICro
Date 20/08/20	020 00:44 NN DUNCE 0 CTD	Des	igned by			Drainage
File COOKSTON	WN PHASE Z SIT	E Che	cked by		-	
Innovyze		Sou	irce Conti	rol 2018.1	1	
		Mode	l Details	<u>1</u>		
	Storage is Offline	Cover Level (m) 103.600 Div:	iding Weir Level	l (m) 101.940	
	Ce	llular St	corage St	ructure		
		Invert L	evel (m) 101.9	40 Safety Facto	or 1.0	
	Infiltration C Infiltration C	oefficient Bas oefficient Sid	e (m/hr) 0.001 e (m/hr) 0.001	00 Porosit 00	y 0.66	
Denth (m) Ana	a (m²) Inf. Area (m²)	Denth (m) And	a (m²) Tof Ar	rea (m²) Denth	(m) Area (m²) 1	(nf. Area (m²)
bepen (m) Are		Seben (m) ML6	- () INT. AI	ca (m) beput	(/ca (m-) 1	
0.000	560.0 560.0	1.100	560.0	664.3 1.3	200 0.0	664.3
	Hvdro-B	rake® Ont	imum Out	flow Conto	rol	
	<u> 117020 D</u>	zanoo op		1100 00000		
	Unit Reference MD-SHE-	0057-1600-1190	-1600	Sump	Available	Yes
Doc	esign Head (m)		1.190	Dia	meter (mm)	57
003	Flush-Flo*	Calcu	lated Minimum	Outlet Pipe Dia	meter (mm)	75
	Objective Minimi Application	se upstream st. Su	orage Sugges rface	ted Manhole Dia	meter (mm) 13	200
	Control Points He	ad (m) Flow (.	(/s) Cont	rol Points	Head (m) Flow	(1/5)
Design	Point (Calculated)	1.190	1.6 1.3 Mean Flow	Kick-Flo [®]	0.511	1.1
	F1050-F10	0.251	1.5 [Healt Flow	over neau kange	-	1.5
The hydrological of specified. Should	alculations have been another type of contro	based on the He ol device othe	ead/Discharge r than a Hvdro-	elationship for Brake Optimum®	the Hydro-Brake be utilised then	Optimum as these storage
routing calculation	ons will be invalidated					
Depth (m) Flo	w (l/s) Depth (m) Flow	(1/s) Depth	(m) Flow (l/s)	Depth (m) Flo	w (1/s) Depth (m) Flow (l/s)
0 100	1 2 0 900	1 2 2	aaa 2.a	4 000	29 70	00 36
0.200	1.3 1.000	1.5 2.	200 2.1	4.500	2.9 7.5	ioo 3.0 3.7
0.300	1.3 1.200	1.6 2.	400 2.2	5.000	3.1 8.0	00 3.8
0.500	1.1 1.600	1.8 3.	000 2.4	6.000	3.4 9.6	00 4.1
0.600	1.2 1.800	1.9 3.	500 2.6	6.500	3.5 9.5	00 4.2
		©1982-2	018 Innov	vyze		
				-		

Design Tool ver. Jun 14	InductionInduc
water Management System	Calculated Adopted 1 0.15 0.15 0.15 0.15 0.15 11 ea 11 ea 27.31 0.15 0.15 0.15 0.16 0.15 11 ea 11 ea 209 ea 209 ea 209 ea 209 ea 213 209 23 209 23 209 24.57 m 27.91 m 27.91 m 27.91 m
STORMTECH Storm	PROJECT REF: Cookstown Phase 2 LOCATION: Site A DATE: 12/08/2020 Site A DATE: TEATED BY: Feter Clarke SYSTEM PARAMETERS Peter Clarke Sommech chamber model Peter Clarke Number of Isolator Rows for TSS Removal Peter Clarke Stome consity Exervation Base Stome Porosity Excavation Base Stone Below Chambers Gegrees) Stone Above Chambers Stone Below Chambers Stone Below Chambers Stone Below Chambers Stone Above Chambers Stone Below Chambers Maximum Width at Excavation Base Stone Below Chambers Stone Above Chambers Stone Below Chambers Maximum Width at Excavation Base Stone Above Chambers Maximum Width at Excavation Base Stone Above Chambers Monter of Storage. E.g. manholes, pipe Monter of Storage. E.g. manholes, pipe Number of SC740 Endcaps System Installed Storage Depth (effective storage depth) Tank overall installed Length at base Tank overall installed Length at Base Tank overall installed Length at Base Tank overall installed Length at Base

APPENDIX C

Foul Sewer Loading Calculations

PROJECT TITLE: Cookstown Pha	ase 2	JOB REFERENC	E: 1606
SUBJECT Wastewater Load for Irish Water			
1605-C-100			
POST DEVELOPMENT DEMAND			
Wastewater flow per head ¹	litres	Unit Consumption All	owance ³ 10
Average Occupancy Ratio ² 2.1	person/3 bed unit	DWF Peak Factor ⁴	6
Residential Unit Type	4 Bed 3 E	3ed (4p) 2 Bed (3p) 1 E	3ed Studio
Average Occupancy(persons) Number of Units	5	4 3 6 100	1 1 96 50
Average Occupancy" (PE)	0	24 300	96 50
Residential Dry Weather Flow(DWF) Volum	e ⁵ 7	itres	
Commercial Unit Type	Shopping Cor	nmercial Pub/ Leis Restaurant G	sure/ Medical/ ym Care Home Creche
Average Occupancy (per m2) Area(m2)	18	25 5 144 95	5 20 20 125 0 279
Average Occupancy ⁵ (PE)	0	6 19	25 0 14
Average Usage(litres per person/day) ⁹ Daily Usage(/)	25 0	100 60 576 1140	50 350 60 1250 0 825
Commercial Dry Weather Flow(DWF) Volun	ne ⁵	3,874 litres	
WASTEWATER LOADING SUMMARY	Residentia	al Commercial	Total
Average Daily Discharge	0.90	0.04	0.94
A charge bally bisonarge	0.00	0.04	0.04
Peak Discharge [®]	<u>5.39</u> //s	0.27 I/s	5.65 //s
ORGANIC LOADING			
EPA Wastewater Parameters Loading Concentrations	Residential Or Loading	ganic Commercial Orga Loading	Total Organic Loading
Average Concentration ⁷ Max Concentrati	on ⁸ Average Conc ⁷ Ma	x Conc ⁸ Average Conc ⁷ Max	Conc ⁸ Average Conc ⁷ Max Conc ⁸
BOD(mg/l)	BOD(kg/da	y) BOD(kg/day)	BOD(kg/day)
168.0 422.0	13.03	32.73 0.65 1.	63 13.68 34.36
SS (mg/l) 163.0 435.0	SS (kg/da) 12.64	/) SS (kg/day) 33.73 0.63 1.	SS (kg/day) 68 13.27 35.42
N (mg/l) 40.6 78.6	N (kg/day 3.15) N (kg/day) 6.10 0.16 0.	N (kg/day) 30 3.31 6.40
D (mell)	D /bette	D /limitime	D (he/dea)
7.1 (mg/l)	0.55	, Р (кg/day) 1.20 0.03 0.	06 0.58 1.26
Notes:			
1 Waste Water flow - 150 l/head as ner Irich Water	Code of Practice - (3.6)		
2. Average Occupancy ratio of 2.7 persons per dwelli	ng from Irish Water Code of Pract	tice - (3.6)	
 10% Unit Consumption Allowance as per Irish Wat DWF Peak Factor is 6 as per Irish Water Code of Pr 	er Code of Practice - (3.6.3) actice - (3.6)		
5. Dry Weather Flow = No. of Residential Units X Ave	rage Occupancy Ratio X Waste W	ater Flow X UCA ³	
6. Peak Discharge = Average Daily Discharge X DWF F	eak Factor	r Treatment Manuals, Treatment System	
/. THE OVELOCE LIVE PROPERTY AND A REAL PROPERTY A	TTOJICIYOLS	and a second s	

 Assumed Maximum concentration is equal to the average concentration plus 2 times the standard deviation (for the 95%) taken from EPA "Wastewater Treatment Manuals, Treatment Systems for Small Communities, Business, Leisure Centres and Hotels".

APPENDIX D

Water Demand Calculations

PROJECT TITLE: Cookstown Phase 2	2 JOB REFERENCE: 1606
SUBJECT Water Demand for Irish Water	Gaci Consulting Engineer
DRAWING NO. CALCULATION 1606-C-100	S BY CHECKED BY DATE
POST DEVELOPMENT DEMAND	
Per-Capita Consumption ¹	150 litres/person/day
Average Occupancy Ratio ²	2.7 person/3 bed unit
Residential Unit Type	4 Bed 3 Bed (4p) 2 Bed (3p) 1 Bed Studio
Average Occupancy(persons) Number of Units	5 4 3 1 1 0 6 100 96 50
Average Occupancy' (PE)	0 24 300 96 50
Average Residential Demand ⁶	70,500 Vday
Commercial Unit Type	Shopping Commercial Pub/ Restaurant Leisure/ Gym Medical/ Care Home Creche
Average Occupancy (per m2)	18 25 5 5 20 20 0 144 05 125 0 275
Average Occupancy ⁵ (PE)	0 6 19 25 0 14
Average Usage(litres per person/day) Daily Usage(/)	25 100 60 50 350 60 0 576 1140 1250 0 825
Average Commercial Demand ⁶	3,791 //day
Average Day/Week Demand Factor ³	1.25
Peak Demand Factor ⁴	5
WATER DEMAND SUMMARY	Residential Commercial Total
Average Daily Demand	0.82 Vs 0.04 Vs 0.86 Vs
Average Day/Peak Week Demand ⁷	1.02 Vs 0.05 Vs 1.07 Vs
Peak Hour Water Demand ⁸	5.100 Vs 0.274 Vs 5.374 Vs
Notes: 1. Per-Capita Consumption 150l/person/day as per Irish Wa 2. Average Occupancy ratio of 2.7 persons per dwelling from 3. Average Day/Week Demand Factor is 1.25 as per Irish Wa 4. Peak Demand Factor is 5 as per Irish Water Code of Pract 5. Average Occupancy(or PE-Population Equivalent) = Nio. of 6. Average Domestic Demand = Average Occupancy X Per-C 7. Average Day/Peak Week Demand = Average Daily Domest 8. Peak Hour Water Demand = Average Occupancy X Per-Ca	iter Code of Practice - (3.7.2) n Irish Water Code of Practice - (3.7.2) ater Code of Practice - (3.7.2) ice - (3.7.2) Residential Units X Average Occupancy Ratio Rapita Consumption tito Demand X Average Day/Week Demand Factor apita Consumption X Average Day/Week Demand Factor X Peak Demand Factor

APPENDIX E

South Dublin County Council Development Plan

2016 - 2022 Zoning Objectives - Map 9

APPENDIX F

South Dublin County Council Development Plan

2016 - 2022 Strategic Flood Risk Assessment

Fluvial Flood Zone Mapping - Map 15

APPENDIX G

Confirmation of Feasibility Letter from Irish Water

Steelworks Property Developments LTD, c/o Greg Daly Scope House Whitehall Road West Perrystown Dublin

Uisce Eireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

26 April 2019

Dear Sir/Madam,

Re: Customer Reference No 155089700 pre-connection enquiry - Subject to contract | Contract denied [Connection for 474 no. domestic units, 392m2 retail unit, gym and creche]

Irish Water has reviewed your pre-connection enquiry in relation to water and wastewater connections at Fourth Avenue/Cookstown Cookstown Estate Road Junction Tallaght,Dublin 24. Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

In the case of wastewater connections this assessment does not confirm that a gravity connection is achievable. Therefore a suitably sized pumping station may be required to be installed on your site. All infrastructure should be designed and installed in accordance with the Irish Water Code of Practice.

Water:

New connection to the existing network is feasible subject to network upgrade and network reconfiguration: 2 new cross-connections between existing adjacent 4"uPVC mains in Second Avenue in Cookstown Industrial Estate (please see attached layout map)

Please note that Irish Water can not guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.

Wastewater:

New connection to the existing network is feasible subject to network extension.

The 600mm ID sewer on Airton Road will need to be extended to the intersection with Belgard Road. The 300mm ID sewer to the west of Belgard road will need to be diverted from the 450 mm sewer on Airton Road and connected to the extended section of 600 mm ID sewer on Airton Road.

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date.

C. In advance of submitting this development to An Bord Pleanala for full assessment, the Developer is required to have entered into a Project Works Services Agreement to deliver infrastructure upgrades to facilitate the connection of the development to Irish Water infrastructure. All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Marina Byrne from the design team on 018925991 or email mzbyrne@water.ie. For further information, visit **www.water.ie/connections**

Yours sincerely,

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Jerry Grant, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan Offig Chláraithe / Registered Office: Teach Colvill, 24:26 Sráid Thalbóid, Baile Átha Cliath 1, DOI NP86 / Colvill House, 24:26 Talbot Street, Dublin 1, DOI NP86 Is cuideachta glníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

APPENDIX H

Statement of Design Acceptance from Irish Water

Steelworks Property Development Ltd. C/o Greg Daly, GDCL Consulting Engineers, Scope House, Whitehall Road West, Perrystown

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

17 September 2019

Re: Design Submission for Fourth Avenue/Cookstown, Cookstown Estate Road Junction, Tallaght, Dublin 24 (the "Development") (the "Design Submission") / Connection Reference No: 155089700

Dear Greg Daly,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Marina Zivanovic Byrne Phone: 01 89 25991 Email: mzbyrne@water.ie

Yours sincerely,

M Buyese

Maria O'Dwyer Connections and Developer Services

Stürthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan Offig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Appendix A

Document Title & Revision

- [Site Services Layout] P1606-C-101-P3
- [Watermain Layout] P1606-C-102-P4
- [Foul Drainage Layout] P1606-C-110-P3

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.